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ABSTRACT 
 

There were roughly 170 million taxi rides in New York City in 2013. Exploiting an understanding of taxi 
supply and demand could increase the efficiency of the city’s taxi system. In this paper, we present a few 
different models to predict the number of taxi pickups that will occur at a specific time and location in New 
York City; these predictions could inform taxi dispatchers and drivers on where to position their taxis. We 
implemented and evaluated three different regression models: linear least-squares regression, support vector 
regression, and decision tree regression. Experimenting with various feature sets and performing grid-search 
to tune hyperparameters, we were able to achieve positive results. Our best-performing model, decision tree 
regression, achieved a root-mean-square deviation of 33.5 and coefficient of determination (R2) of 0.99, a 
significant improvement over our baseline model’s root-mean-square-deviation of 146 and R2 of 0.73.  
 
 
I. INTRODUCTION AND MOTIVATION 
 

The ability to predict taxi ridership could present 
valuable insights to city planners and taxi dispatchers 
in answering questions such as how to position cabs 
where they are most needed, how many taxis to 
dispatch, and how ridership varies over time. Our 
project focuses on predicting the number of taxi 
pickups given a one-hour time window and a location 
within New York City. This project concept is inspired 
by the MIT 2013-2014 Big Data Challenge, which 
proposed the same problem for taxicabs in Boston. 
The problem is formulated in terms of the following 
inputs and outputs: 
 

Input. 
Date, one-hour time window, and latitude and 
longitude coordinates within New York City.  
e.g. “17 March 2013, from 5 PM to 6 PM, at coordinates 
(40.75, -73.97)” 
 

Output. 
Predicted number of taxi pickups at the input time and 
location.  
e.g. “561.88 pickups” 
 
II. METHODOLOGY 
 

A. Data Management 
We use a dataset detailing all ~170 million taxi trips in 
New York City in 2013, as provided by the Freedom 
of Information Law and hosted on the website of 

Chris Whong [1]. The data associates each taxi ride 
with information including date, time, and location of 
pickup and drop-off.  
 

A small number of taxi pickups in this dataset 
originate from well outside the New York City area. In 
order to constrain our problem to New York City as 
well as to reduce the size of our data given our limited 
computational resources, we only consider taxi trips 
that originate somewhere within the 28-square-mile 
rectangular region that encloses Manhattan as shown 
and defined in Figure 1 below. To further limit the 
size of our data, we only consider taxi rides in the 
months of January through April. 
 

 
Figure 1. We only consider taxi rides in the portion of 

                                                
1 All taxi data is accessible at: chriswhong.com/open-
data/foil_nyc_taxi. 



New York City between latitudes 40.70o to 40.84o and 
longitudes -74.02o to -73.89o. This rectangular region 
encloses the city’s densest areas: Manhattan, part of 
Queens, and part of the Bronx. 
 

We divide our rectangular region of New York City 
into a grid of 0.01o x 0.01o squares called zones. Each 
zone roughly corresponds to 1km x 1km region. 
 

For ease of querying and aggregation, we store the 
data in a MySQL database hosted on Amazon RDS.  
In order to put the raw data into the same form as our 
input to the problem, we group the raw taxi data by 
time (at the granularity of an hour) and zone, count 
the total number of pickups for each time-zone 
combination, and store these aggregated values as data 
points to be used for training and testing. For instance, 
one row in our aggregated pickups table is “2013-03-
05 15:00:00, 15704, 811”, representing 811 pickups in 
Zone #15704 on March 5, 2013 between 3 PM and 4 
PM local time. In total, our data set consists of 
482,000 such data points.  
 

B. Evaluation 
In order to evaluate the performance of our model, we 
split the data into a training set and testing set, where 
the training examples are all ordered chronologically 
before the testing examples. This configuration 
mimics the task of predicting future numbers of taxi 
pickups using only past data. 
 

We considered using a few different error metrics to 
evaluate our predictions: RMSD, mean absolute error, 
and a root-mean-square percent deviation. We 
ultimately chose RMSD because it favors consistency 
and heavily penalizes predictions with a high deviation 
from the true number of pickups.  
 

From the point of view of a taxi dispatcher, any large 
mistake in gauging taxi demand for a particular zone 
could be costly ‒ imagine sending 600 taxis to a zone 
that only truly requires 400. This misallocation results 
in many unutilized taxis crowded in the same place, 
and should be penalized more heavily than dispatching 
6 taxis to a zone that only requires 4, or even 
dispatching 6 taxis to 100 different zones that only 
require 4 taxis each. RMSD most heavily penalizes 
such large misallocations and best represents the 
quality of our models’ predictions. 
 

In comparing the results between our different 
models, we also report the R2 value (coefficient of 
determination) in order to evaluate how well the 
models perform relative to the variance of the data set.  

C. Feature Extraction 
Below is a list of feature templates we use to extract 
features from each data point, along with a rough 
intuition as to why these features might be predictive. 
 

1. Zone ID. We expect location to be highly 
predictive of taxi traffic. 

2. Hour of day ∈ [0, 23]. We expect overall NYC taxi 
ridership to follow a daily cycle.  

3. Day of week ∈ [0, 6]. We expect day of week to 
correlate with taxi traffic. 

4. Zone and hour of day combined. Daily patterns in 
ridership may be different in different zones. For 
example, at 12 PM, taxi traffic may drop in 
residential zones (because people are at work) but 
increase in commercial zones (because workers go 
out to lunch). Combining zone and hour of day 
would capture such an inter-feature dependency. 

5. Zone, day of week, and hour of day combined. Even 
within a specific zone, the same hour of day may 
have a different effect during different days of the 
week. 

6. Hourly precipitation, measured in hundredths of an 
inch, provided by the National Climatic Data 
Center [2], and discretized into 3 buckets 
representing no rain, less than 0.1 inches of rain in 
an hour, and at least 0.1 inches of rain in an hour. 
We expect precipitation to increase taxi ridership, 
since in rainy weather people may prefer taking 
taxis to walking or taking public transportation. 

7. Zone, day of week and hourly precipitation combined. 
Rainfall may have a different impact on different 
zones at different times of the day. 

 

All features defined by the feature templates above are 
binary. For example, the feature 
“ZONE=15403_DAY=5_HOUR=13”, derived from 
feature template #5 in the list above, has a value of 1 
only if the data point represents a taxi pickup in Zone 
#15403 on Saturday (day 5) between 1 PM and 2 PM.  
 

We did not experiment with quadratic or any other 
polynomial operations on our numerical features 
because we did not expect any polynomial relationship 
between our features and the number of taxi pickups. 
 

 
 
 

                                                
2 All weather data is available at: ncdc.noaa.gov. The 
weather data we use in our project was observed from the 
New York Belvedere Observation Tower in Central Park.  



D. Regression Models 
Baseline Model. 
Our baseline model predicts the number of pickups on 
a test data point at a given zone as the average number 
of pickups for all training data points in that zone. 
 

To improve upon this baseline, we experiment with 
three different regression models described below. We 
use the Python module scikit-learn to apply our 
regression models.  
 

Linear least-squares regression. 
The linear regression model allows us to exploit linear 
patterns in the data set. This model is an appealing 
first choice because feature weights are easily 
interpretable and because stochastic gradient descent 
runs efficiently on large datasets. We choose squared 
loss (square of the residual) as our objective function 
in stochastic gradient descent because minimizing it 
directly relates to minimizing our error metric, root-
mean-square-deviation. 
 

Epsilon Support Vector Regression. 
Our feature templates produce a large number of 
features; for example, the feature template 
“Zone_DayOfWeek_HourOfDay” alone produces 
179!zones!×!7!days!per!week!×!24!hours!per!day →
30,072 binary features. We choose to include support 
vector regression since support vector machines 
perform well with many sparse features and can derive 
complex non-linear boundaries depending on the 
choice of the kernel. 
 

Decision Tree Regression. 
The decision tree regression model is both easy-to-
interpret and capable of representing complex decision 
boundaries, thus complementing our other chosen 
models. We run the decision tree regression model on 
a reduced feature set (Feature Set #1 as defined in 
Table 2) that excludes feature templates containing 
combination features. We do this for two reasons: (1) 
training the decision tree model using all 36,649 binary 
features contained in Feature Set #2 (defined in Table 
2) is prohibitively computationally expensive, since 
each new node in the decision tree must decide on 
which feature to split, and (2) combination features 
essentially represent the AND operation applied to 
multiple binary features; since this AND operation is 
naturally represented by paths in the decision tree, 
including combination features would be redundant. 
 

III. RESULTS 
 

Table 1 summarizes the best results for each model, 

obtained by training on the first 70% of the data 
points (January 1 through March 28) and testing on 
the remaining 30% (March 29 through April 30). The 
hyperparameters used for each model are determined 
using grid-search over select parameter values, and the 
best features to use for each model are determined 
through experimentation.  
 

Model Root-mean-
square 

Deviation 

Coef. of 
Determination 

(R2) 

Baseline 145.78 0.7318 

Linear Least-Squares 
Regression 
(Feature Set #2) 

40.74 0.9791 

Support Vector 
Regression 
(Feature Set #2; trained 
on 50K randomly selected 
training examples) 

79.77 
 

0.9197 

Decision Tree Regression 
(Feature Set #1) 

33.47 0.9858 

Table 1. Best results for each model. The feature sets 
are defined in the Table 2 below. 
 

Feature Set #1 

Zone 
HourOfDay 
DayOfWeek 
HourlyRainfall 

Feature Set #2 

Zone 
HourOfDay 
DayOfWeek 
Zone_HourOfDay 
Zone_DayOfWeek_HourOfDay 

Feature Set #3 

Zone 
HourOfDay 
DayOfWeek 
Zone_HourOfDay 
Zone_DayOfWeek_HourOfDay 
Zone_DayOfWeek_HourlyRainfall 

Table 2. List of the feature templates that compose 
each feature set. 
 

A. Hyperparameters 
Below, we discuss the results of grid search for each 
model.  
 

Linear 
The three hyperparameters tested using grid search 
were the number of iterations of stochastic gradient 
descent, !!, and p, where !! and p are parameters of 

the inverse-scaled learning rate ! = ! !!!!. These 

parameters are important to the model because they 



control the extent to which the model converges to an 
optimal value. The model converged to an optimum 
R2 value of about 0.98 using 8000 iterations of 
stochastic gradient descent and parameter values 
!! = 0.2, and p = 0.4.  
 

Support Vector Regression 
Because training support vector regression on large 
data set sizes is computationally expensive, we were 
only able to grid-search one parameter, the 
regularization parameter C. Our model performed best 
with a high C value of 1 x 107, indicating that lower 
values of C underfit the data and resulted in too few 
support vectors. We used a radial basis function kernel 
in order to introduce nonlinearity; using a nonlinear 
further increases the computation time with LibSVM. 
In order to lower computation time, we ran support 
vector regression on a reduced training set size of 
50,000 data points (as opposed to ~337,000 data 
points for the other models). For reference, training 
the support vector regression using the full training set 
did not complete in even 8 hours of running on a 
Stanford Barley machine using 4 cores. It is likely that 
support vector regression performed much worse than 
the other models because of this relatively small 
training set size, achieving a root-mean-square 
deviation value of 79.77. 
 

Decision Tree Regression 
The two hyperparameters tuned were the maximum 
depth of the tree and the minimum number of 
examples that a leaf node must represent. These two 
parameters are important to the model because they 
balance overfitting and underfitting. Of the values we 
swept, our model performed best with a minimum of 
2 examples per leaf and a maximum tree-depth of 100. 
With greater tree-depths, the model achieved the same 
performance on the test set, suggesting that tree-
depths greater than 100 contribute to overfitting. 
 

B. Feature Analysis 
Experiments with different feature sets 
In order to determine which feature sets produce the 
best results, we define three feature sets (see Table 2 
above). Below are the results obtained running the 
linear regression model on each feature set.  
 

We observe that feature combinations significantly 
improve results, as expected. Also, counter to our 
intuitions, weather features do not improve results 
(Table 3).  
 
 

 
Feature Set Root-mean-

square 
Deviation 

Coef. of 
Determination 

(R2) 
Feature Set #1 
(Basic features) 

138.05 0.7595 

Feature Set #2 
(Basic + feature 
combinations) 

40.07 0.9797 

Feature Set #3 
(Basic + feature 
combinations 
+ precipitation) 

40.74 0.9791 

Table 3. Results of linear regression using different 
feature sets.  
 

Analysis of feature weights 
In order to better understand the relative importance 
of our feature templates, we use the linear regression 
model to generate stacked bar charts of all feature 
weights that are used to make predictions over the 
course of a week. That is, at each hour interval in a 
given zone, we stack the weights of all the features 
whose values are 1 for that data point. The predicted 
number of taxi pickups at a given hour can be 
visualized by adding the heights of all the positive 
feature weights and subtracting the heights of all the 
negative feature weights. Since all features are binary, 
the feature weights map directly to the number of taxi 
pickups. In other words, if the weight of feature 
“ZONE=16304” is 126, then this feature contributes 
+126 pickups to the total predicted number of 
pickups for this data point. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 



Figure 2. Feature weights used to make predictions at 
each hour over the course of a week (April 7, 2013 
through April 13, 2013), for two different zones in New 
York City, one busy (Zone #14901, top) and one quiet 
(Zone #16307, bottom).  
 

The feature weight plots in Figure 2 validate many of 
the intuitions we used to pick features. For example, 
we notice small daily cycles common to both zones; 
this justifies the importance of the ‘HourOfDay’ 
feature template (red series). These feature weights 
represent the daily taxi traffic cycles in New York City 
across all zones. Furthermore, the ‘Zone_HourOfDay’ 
feature weights (cyan series) validate our intuition that 
daily taxi traffic patterns may vary by zone: notice that 

2 PM in Zone #14901 has a higher feature weight 
relative to other times of day than does 2PM in Zone 
#16307.  
 

The weights of the weather feature templates present 
interesting and nuanced results. It rained heavily 
between April 11 and April 13 (hours 96 through 168). 
Despite this period of intense rain, the weights of the 
‘HourlyRainfall’ features (magenta series) are roughly 
constant throughout the week—this suggests that 
rainfall has little effect on taxi ridership in New York 
City overall. Now, consider zone-specific effects of 
rain. From the plots, we see that 
‘Zone_DayOfWeek_HourlyRainfall’ features predict 



higher taxi ridership during heavy rain in Zone 
#14901, but slightly lower taxi ridership during heavy 
rain in Zone #16307. As depicted in the maps in 
Figure 3 below, Zone #14901 is much more densely 
populated than Zone #16307 and contains multiple 
subway stops. Perhaps people in Zone #14901 opt for 
taxis as opposed to public transportation when it is 
raining more than people in Zone #16307. As we had 
suspected, rain appears to have different effects in 
different zones, validating the usefulness of our 
combination feature template. 
 

 
Figure 3. Zones #14901 and #16307 on a road map and 
a NYC Subway map.  
 
C. Model Analysis 
In order to visualize how well the models perform, we 
plot the true versus predicted number of pickups for 
each data point in the test set in Figure 4.  
 

The scatter plots in Figure 4 suggest that the linear 
regression and decision tree regression models 
perform well on the test set. Most predictions lie close 
to the true values. The data points straddle the unit-
slope line evenly, signifying that the models do not 
systematically underestimate or overestimate the 
number of taxi pickups. For both models, as expected, 
absolute prediction error increases as the true number 
of pickups increases. This effect can be visualized as a 
cone-shaped region extending outward from the origin 
within which the data points fall. The error plot for 
support vector regression (not shown) looks roughly 
the same, but with more dispersion of data points. 
 

 
Figure 4. Predicted versus true number of pickups 
using least-squares linear regression (top) and decision 
tree regression (bottom). 
 

The baseline model performs very poorly by 
comparison. This is unsurprising, since the baseline 
naively predicts the same value for all data points in a 
given zone, as shown by the horizontal streaks of 
points in Figure 5.  
  

 
Figure 5. Predicted versus true number of pickups 
using the baseline model. 



Analysis of Decision Tree Regression 
Of all of our models, decision tree regression 
performed best, achieving an RMSD value of 33.47. In 
order to quantify bias, variance, and the degree to 
which the model has converged, we plot learning 
curves, shown below in Figure 6. The learning curves 
indicate that the decision tree regression model 
converges using a training set size of as few as 100,000 
training examples. Using greater than 100,000 training 
examples, the test and training R2 scores are practically 
identical and well above 0.97, indicating that the model 
achieves both low bias and low variance. 
 

 
Figure 6. Learning curves for decision tree regression, 
showing up to 70,000 training data points (top) and up 
to ~337,000 training data points (bottom). 
 

The tree diagram in Figure 7 shows a subsection of the 
trained decision tree. Since all of our features are 
binary, each node in the tree represents one of the 206 
features in Feature Set #1 upon whose value the data 
can be split. Evaluating a test data point using a 
decision tree can be imagined as asking the data point 
true-or-false questions until a leaf node is reached. As 
the tree diagram begins to show, the first question that 
our tree asks is what zone the data point resides in, 
since the decision tree has determined that branching 

on zone provides the most information gain. Once a 
data point’s zone is ascertained, it is next asked for its 
hour of day, then day of week, and finally amount of 
precipitation. This ordering of feature templates by 
descending information gain is consistent with the 
relative weights of features produced by the linear 
regression model, shown in Figure 2: zone-based 
features are most informative, and weather-based 
features are least informative.  
 

 
Figure 7. Subsection of the final trained decision tree. 
 

One possible reason this model outperforms linear 
regression and support vector regression is that 
although it is run on a smaller feature set, paths within 
the tree are able to represent the combination of (that 
is, the AND operation applied to) any number of 
features in Feature Set #1. For example, the decision 
tree regression model is able to capture the effect of 
rainfall on taxi pickups specifically on Sundays at 4am 
in Zone #15102 (as shown in rightmost paths of the 
above tree), whereas the other models cannot easily 
capture such dependencies between features (short of 
combining all features together). Perhaps it is because 
these features in Feature Set #1 are highly dependent 
upon one another that the decision tree regression 
performs best of all the models we tried. 
 

IV. CONCLUSIONS AND FUTURE WORK 
 

Conclusion 
Overall, our models for predicting taxi pickups in New 
York City performed well. The decision tree regression 
model performed best, likely due to its unique ability 
to capture complex feature dependencies. The 
decision tree regression model achieved a value of 
33.47 for RMSD and 0.9858 for R2 ‒ a significant 
improvement upon the baseline’s values of 145.78 for 
RMSD and 0.7318 for R2. Our experiments, results, 
and error analysis for the most part supported our 
intuitions about the usefulness of our features, with 
the exception of the unexpected result that weather 
features did not improve model performance. A model 



such as ours could be useful to city planners and taxi 
dispatchers in determining where to position taxicabs 
and studying patterns in ridership. 
 

Future work 
Predictions for arbitrary zones and time intervals 
Currently, our model predicts pickups only for pre-
defined zones and 1-hour time intervals. We could 
extend our model to predict the number of taxi 
pickups in arbitrarily sized zones and time intervals. 
We could do this by training our model using very 
small zones and time intervals. In order to predict the 
number of pickups for a larger region and time 
interval, we could sum our granular prediction values 
across all mini-zones in the specified region and all 
mini-time-intervals in the desired time interval.  
 

Neural network regression. 
We may be able to achieve good results using a neural 
network regression, since neural networks can 
automatically tune and model feature interactions. 
Instead of manually determining which features to 
combine in order to capture feature interactions, we 
could let the learning algorithm perform this task. One 
possible instance of features interacting in the real 
world could be that New Yorkers may take taxi rides 
near Central Park or when it is raining, but not when 
they are near Central Park and it is raining, since they 
may not visit the park in bad weather. Neural 
networks could be promising because they can learn 
nonlinearities automatically, such as this example of an 
XOR relationship between features. 
 

In addition to our three core regression models, we 
implemented a neural network regression model using 
the Python library PyBrain. However, we would need 
more time to give the neural network model due 
consideration, so we list it here as possible future 
work. 
 

Clustering feature template. 
In order to find non-obvious patterns across data 
points, we could use unsupervised learning to cluster 
our training set. The clustering algorithm could use 
features such as the number of bars and restaurants in 
a given zone, or distance to the nearest subway station. 
The cluster in which each data point falls could then 
serve as an additional feature for our regression 
models, thereby exploiting similar characteristics 
between different zones for learning. 
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