
Predicting Taxi Pickups in New York City
Josh Grinberg, Arzav Jain, Vivek Choksi

Final Paper for CS221, Autumn 2014

ABSTRACT

There were roughly 170 million taxi rides in New York City in 2013. Exploiting an understanding of taxi
supply and demand could increase the efficiency of the city’s taxi system. In this paper, we present a few
different models to predict the number of taxi pickups that will occur at a specific time and location in New
York City; these predictions could inform taxi dispatchers and drivers on where to position their taxis. We
implemented and evaluated three different regression models: linear least-squares regression, support vector
regression, and decision tree regression. Experimenting with various feature sets and performing grid-search
to tune hyperparameters, we were able to achieve positive results. Our best-performing model, decision tree
regression, achieved a root-mean-square deviation of 33.5 and coefficient of determination (R2) of 0.99, a
significant improvement over our baseline model’s root-mean-square-deviation of 146 and R2 of 0.73.

I. INTRODUCTION AND MOTIVATION

The ability to predict taxi ridership could present
valuable insights to city planners and taxi dispatchers
in answering questions such as how to position cabs
where they are most needed, how many taxis to
dispatch, and how ridership varies over time. Our
project focuses on predicting the number of taxi
pickups given a one-hour time window and a location
within New York City. This project concept is inspired
by the MIT 2013-2014 Big Data Challenge, which
proposed the same problem for taxicabs in Boston.
The problem is formulated in terms of the following
inputs and outputs:

Input.
Date, one-hour time window, and latitude and
longitude coordinates within New York City.
e.g. “17 March 2013, from 5 PM to 6 PM, at coordinates
(40.75, -73.97)”

Output.
Predicted number of taxi pickups at the input time and
location.
e.g. “561.88 pickups”

II. METHODOLOGY

A. Data Management
We use a dataset detailing all ~170 million taxi trips in
New York City in 2013, as provided by the Freedom
of Information Law and hosted on the website of

Chris Whong [1]. The data associates each taxi ride
with information including date, time, and location of
pickup and drop-off.

A small number of taxi pickups in this dataset
originate from well outside the New York City area. In
order to constrain our problem to New York City as
well as to reduce the size of our data given our limited
computational resources, we only consider taxi trips
that originate somewhere within the 28-square-mile
rectangular region that encloses Manhattan as shown
and defined in Figure 1 below. To further limit the
size of our data, we only consider taxi rides in the
months of January through April.

Figure 1. We only consider taxi rides in the portion of

1 All taxi data is accessible at: chriswhong.com/open-
data/foil_nyc_taxi.

New York City between latitudes 40.70o to 40.84o and
longitudes -74.02o to -73.89o. This rectangular region
encloses the city’s densest areas: Manhattan, part of
Queens, and part of the Bronx.

We divide our rectangular region of New York City
into a grid of 0.01o x 0.01o squares called zones. Each
zone roughly corresponds to 1km x 1km region.

For ease of querying and aggregation, we store the
data in a MySQL database hosted on Amazon RDS.
In order to put the raw data into the same form as our
input to the problem, we group the raw taxi data by
time (at the granularity of an hour) and zone, count
the total number of pickups for each time-zone
combination, and store these aggregated values as data
points to be used for training and testing. For instance,
one row in our aggregated pickups table is “2013-03-
05 15:00:00, 15704, 811”, representing 811 pickups in
Zone #15704 on March 5, 2013 between 3 PM and 4
PM local time. In total, our data set consists of
482,000 such data points.

B. Evaluation
In order to evaluate the performance of our model, we
split the data into a training set and testing set, where
the training examples are all ordered chronologically
before the testing examples. This configuration
mimics the task of predicting future numbers of taxi
pickups using only past data.

We considered using a few different error metrics to
evaluate our predictions: RMSD, mean absolute error,
and a root-mean-square percent deviation. We
ultimately chose RMSD because it favors consistency
and heavily penalizes predictions with a high deviation
from the true number of pickups.

From the point of view of a taxi dispatcher, any large
mistake in gauging taxi demand for a particular zone
could be costly ‒ imagine sending 600 taxis to a zone
that only truly requires 400. This misallocation results
in many unutilized taxis crowded in the same place,
and should be penalized more heavily than dispatching
6 taxis to a zone that only requires 4, or even
dispatching 6 taxis to 100 different zones that only
require 4 taxis each. RMSD most heavily penalizes
such large misallocations and best represents the
quality of our models’ predictions.

In comparing the results between our different
models, we also report the R2 value (coefficient of
determination) in order to evaluate how well the
models perform relative to the variance of the data set.

C. Feature Extraction
Below is a list of feature templates we use to extract
features from each data point, along with a rough
intuition as to why these features might be predictive.

1. Zone ID. We expect location to be highly
predictive of taxi traffic.

2. Hour of day ∈ [0, 23]. We expect overall NYC taxi
ridership to follow a daily cycle.

3. Day of week ∈ [0, 6]. We expect day of week to
correlate with taxi traffic.

4. Zone and hour of day combined. Daily patterns in
ridership may be different in different zones. For
example, at 12 PM, taxi traffic may drop in
residential zones (because people are at work) but
increase in commercial zones (because workers go
out to lunch). Combining zone and hour of day
would capture such an inter-feature dependency.

5. Zone, day of week, and hour of day combined. Even
within a specific zone, the same hour of day may
have a different effect during different days of the
week.

6. Hourly precipitation, measured in hundredths of an
inch, provided by the National Climatic Data
Center [2], and discretized into 3 buckets
representing no rain, less than 0.1 inches of rain in
an hour, and at least 0.1 inches of rain in an hour.
We expect precipitation to increase taxi ridership,
since in rainy weather people may prefer taking
taxis to walking or taking public transportation.

7. Zone, day of week and hourly precipitation combined.
Rainfall may have a different impact on different
zones at different times of the day.

All features defined by the feature templates above are
binary. For example, the feature
“ZONE=15403_DAY=5_HOUR=13”, derived from
feature template #5 in the list above, has a value of 1
only if the data point represents a taxi pickup in Zone
#15403 on Saturday (day 5) between 1 PM and 2 PM.

We did not experiment with quadratic or any other
polynomial operations on our numerical features
because we did not expect any polynomial relationship
between our features and the number of taxi pickups.

2 All weather data is available at: ncdc.noaa.gov. The
weather data we use in our project was observed from the
New York Belvedere Observation Tower in Central Park.

D. Regression Models
Baseline Model.
Our baseline model predicts the number of pickups on
a test data point at a given zone as the average number
of pickups for all training data points in that zone.

To improve upon this baseline, we experiment with
three different regression models described below. We
use the Python module scikit-learn to apply our
regression models.

Linear least-squares regression.
The linear regression model allows us to exploit linear
patterns in the data set. This model is an appealing
first choice because feature weights are easily
interpretable and because stochastic gradient descent
runs efficiently on large datasets. We choose squared
loss (square of the residual) as our objective function
in stochastic gradient descent because minimizing it
directly relates to minimizing our error metric, root-
mean-square-deviation.

Epsilon Support Vector Regression.
Our feature templates produce a large number of
features; for example, the feature template
“Zone_DayOfWeek_HourOfDay” alone produces
179!zones!×!7!days!per!week!×!24!hours!per!day →
30,072 binary features. We choose to include support
vector regression since support vector machines
perform well with many sparse features and can derive
complex non-linear boundaries depending on the
choice of the kernel.

Decision Tree Regression.
The decision tree regression model is both easy-to-
interpret and capable of representing complex decision
boundaries, thus complementing our other chosen
models. We run the decision tree regression model on
a reduced feature set (Feature Set #1 as defined in
Table 2) that excludes feature templates containing
combination features. We do this for two reasons: (1)
training the decision tree model using all 36,649 binary
features contained in Feature Set #2 (defined in Table
2) is prohibitively computationally expensive, since
each new node in the decision tree must decide on
which feature to split, and (2) combination features
essentially represent the AND operation applied to
multiple binary features; since this AND operation is
naturally represented by paths in the decision tree,
including combination features would be redundant.

III. RESULTS

Table 1 summarizes the best results for each model,

obtained by training on the first 70% of the data
points (January 1 through March 28) and testing on
the remaining 30% (March 29 through April 30). The
hyperparameters used for each model are determined
using grid-search over select parameter values, and the
best features to use for each model are determined
through experimentation.

Model Root-mean-
square

Deviation

Coef. of
Determination

(R2)

Baseline 145.78 0.7318

Linear Least-Squares
Regression
(Feature Set #2)

40.74 0.9791

Support Vector
Regression
(Feature Set #2; trained
on 50K randomly selected
training examples)

79.77

0.9197

Decision Tree Regression
(Feature Set #1)

33.47 0.9858

Table 1. Best results for each model. The feature sets
are defined in the Table 2 below.

Feature Set #1

Zone
HourOfDay
DayOfWeek
HourlyRainfall

Feature Set #2

Zone
HourOfDay
DayOfWeek
Zone_HourOfDay
Zone_DayOfWeek_HourOfDay

Feature Set #3

Zone
HourOfDay
DayOfWeek
Zone_HourOfDay
Zone_DayOfWeek_HourOfDay
Zone_DayOfWeek_HourlyRainfall

Table 2. List of the feature templates that compose
each feature set.

A. Hyperparameters
Below, we discuss the results of grid search for each
model.

Linear
The three hyperparameters tested using grid search
were the number of iterations of stochastic gradient
descent, !!, and p, where !! and p are parameters of

the inverse-scaled learning rate ! = ! !!!!. These

parameters are important to the model because they

control the extent to which the model converges to an
optimal value. The model converged to an optimum
R2 value of about 0.98 using 8000 iterations of
stochastic gradient descent and parameter values
!! = 0.2, and p = 0.4.

Support Vector Regression
Because training support vector regression on large
data set sizes is computationally expensive, we were
only able to grid-search one parameter, the
regularization parameter C. Our model performed best
with a high C value of 1 x 107, indicating that lower
values of C underfit the data and resulted in too few
support vectors. We used a radial basis function kernel
in order to introduce nonlinearity; using a nonlinear
further increases the computation time with LibSVM.
In order to lower computation time, we ran support
vector regression on a reduced training set size of
50,000 data points (as opposed to ~337,000 data
points for the other models). For reference, training
the support vector regression using the full training set
did not complete in even 8 hours of running on a
Stanford Barley machine using 4 cores. It is likely that
support vector regression performed much worse than
the other models because of this relatively small
training set size, achieving a root-mean-square
deviation value of 79.77.

Decision Tree Regression
The two hyperparameters tuned were the maximum
depth of the tree and the minimum number of
examples that a leaf node must represent. These two
parameters are important to the model because they
balance overfitting and underfitting. Of the values we
swept, our model performed best with a minimum of
2 examples per leaf and a maximum tree-depth of 100.
With greater tree-depths, the model achieved the same
performance on the test set, suggesting that tree-
depths greater than 100 contribute to overfitting.

B. Feature Analysis
Experiments with different feature sets
In order to determine which feature sets produce the
best results, we define three feature sets (see Table 2
above). Below are the results obtained running the
linear regression model on each feature set.

We observe that feature combinations significantly
improve results, as expected. Also, counter to our
intuitions, weather features do not improve results
(Table 3).

Feature Set Root-mean-

square
Deviation

Coef. of
Determination

(R2)
Feature Set #1
(Basic features)

138.05 0.7595

Feature Set #2
(Basic + feature
combinations)

40.07 0.9797

Feature Set #3
(Basic + feature
combinations
+ precipitation)

40.74 0.9791

Table 3. Results of linear regression using different
feature sets.

Analysis of feature weights
In order to better understand the relative importance
of our feature templates, we use the linear regression
model to generate stacked bar charts of all feature
weights that are used to make predictions over the
course of a week. That is, at each hour interval in a
given zone, we stack the weights of all the features
whose values are 1 for that data point. The predicted
number of taxi pickups at a given hour can be
visualized by adding the heights of all the positive
feature weights and subtracting the heights of all the
negative feature weights. Since all features are binary,
the feature weights map directly to the number of taxi
pickups. In other words, if the weight of feature
“ZONE=16304” is 126, then this feature contributes
+126 pickups to the total predicted number of
pickups for this data point.

Figure 2. Feature weights used to make predictions at
each hour over the course of a week (April 7, 2013
through April 13, 2013), for two different zones in New
York City, one busy (Zone #14901, top) and one quiet
(Zone #16307, bottom).

The feature weight plots in Figure 2 validate many of
the intuitions we used to pick features. For example,
we notice small daily cycles common to both zones;
this justifies the importance of the ‘HourOfDay’
feature template (red series). These feature weights
represent the daily taxi traffic cycles in New York City
across all zones. Furthermore, the ‘Zone_HourOfDay’
feature weights (cyan series) validate our intuition that
daily taxi traffic patterns may vary by zone: notice that

2 PM in Zone #14901 has a higher feature weight
relative to other times of day than does 2PM in Zone
#16307.

The weights of the weather feature templates present
interesting and nuanced results. It rained heavily
between April 11 and April 13 (hours 96 through 168).
Despite this period of intense rain, the weights of the
‘HourlyRainfall’ features (magenta series) are roughly
constant throughout the week—this suggests that
rainfall has little effect on taxi ridership in New York
City overall. Now, consider zone-specific effects of
rain. From the plots, we see that
‘Zone_DayOfWeek_HourlyRainfall’ features predict

higher taxi ridership during heavy rain in Zone
#14901, but slightly lower taxi ridership during heavy
rain in Zone #16307. As depicted in the maps in
Figure 3 below, Zone #14901 is much more densely
populated than Zone #16307 and contains multiple
subway stops. Perhaps people in Zone #14901 opt for
taxis as opposed to public transportation when it is
raining more than people in Zone #16307. As we had
suspected, rain appears to have different effects in
different zones, validating the usefulness of our
combination feature template.

Figure 3. Zones #14901 and #16307 on a road map and
a NYC Subway map.

C. Model Analysis
In order to visualize how well the models perform, we
plot the true versus predicted number of pickups for
each data point in the test set in Figure 4.

The scatter plots in Figure 4 suggest that the linear
regression and decision tree regression models
perform well on the test set. Most predictions lie close
to the true values. The data points straddle the unit-
slope line evenly, signifying that the models do not
systematically underestimate or overestimate the
number of taxi pickups. For both models, as expected,
absolute prediction error increases as the true number
of pickups increases. This effect can be visualized as a
cone-shaped region extending outward from the origin
within which the data points fall. The error plot for
support vector regression (not shown) looks roughly
the same, but with more dispersion of data points.

Figure 4. Predicted versus true number of pickups
using least-squares linear regression (top) and decision
tree regression (bottom).

The baseline model performs very poorly by
comparison. This is unsurprising, since the baseline
naively predicts the same value for all data points in a
given zone, as shown by the horizontal streaks of
points in Figure 5.

Figure 5. Predicted versus true number of pickups
using the baseline model.

Analysis of Decision Tree Regression
Of all of our models, decision tree regression
performed best, achieving an RMSD value of 33.47. In
order to quantify bias, variance, and the degree to
which the model has converged, we plot learning
curves, shown below in Figure 6. The learning curves
indicate that the decision tree regression model
converges using a training set size of as few as 100,000
training examples. Using greater than 100,000 training
examples, the test and training R2 scores are practically
identical and well above 0.97, indicating that the model
achieves both low bias and low variance.

Figure 6. Learning curves for decision tree regression,
showing up to 70,000 training data points (top) and up
to ~337,000 training data points (bottom).

The tree diagram in Figure 7 shows a subsection of the
trained decision tree. Since all of our features are
binary, each node in the tree represents one of the 206
features in Feature Set #1 upon whose value the data
can be split. Evaluating a test data point using a
decision tree can be imagined as asking the data point
true-or-false questions until a leaf node is reached. As
the tree diagram begins to show, the first question that
our tree asks is what zone the data point resides in,
since the decision tree has determined that branching

on zone provides the most information gain. Once a
data point’s zone is ascertained, it is next asked for its
hour of day, then day of week, and finally amount of
precipitation. This ordering of feature templates by
descending information gain is consistent with the
relative weights of features produced by the linear
regression model, shown in Figure 2: zone-based
features are most informative, and weather-based
features are least informative.

Figure 7. Subsection of the final trained decision tree.

One possible reason this model outperforms linear
regression and support vector regression is that
although it is run on a smaller feature set, paths within
the tree are able to represent the combination of (that
is, the AND operation applied to) any number of
features in Feature Set #1. For example, the decision
tree regression model is able to capture the effect of
rainfall on taxi pickups specifically on Sundays at 4am
in Zone #15102 (as shown in rightmost paths of the
above tree), whereas the other models cannot easily
capture such dependencies between features (short of
combining all features together). Perhaps it is because
these features in Feature Set #1 are highly dependent
upon one another that the decision tree regression
performs best of all the models we tried.

IV. CONCLUSIONS AND FUTURE WORK

Conclusion
Overall, our models for predicting taxi pickups in New
York City performed well. The decision tree regression
model performed best, likely due to its unique ability
to capture complex feature dependencies. The
decision tree regression model achieved a value of
33.47 for RMSD and 0.9858 for R2 ‒ a significant
improvement upon the baseline’s values of 145.78 for
RMSD and 0.7318 for R2. Our experiments, results,
and error analysis for the most part supported our
intuitions about the usefulness of our features, with
the exception of the unexpected result that weather
features did not improve model performance. A model

such as ours could be useful to city planners and taxi
dispatchers in determining where to position taxicabs
and studying patterns in ridership.

Future work
Predictions for arbitrary zones and time intervals
Currently, our model predicts pickups only for pre-
defined zones and 1-hour time intervals. We could
extend our model to predict the number of taxi
pickups in arbitrarily sized zones and time intervals.
We could do this by training our model using very
small zones and time intervals. In order to predict the
number of pickups for a larger region and time
interval, we could sum our granular prediction values
across all mini-zones in the specified region and all
mini-time-intervals in the desired time interval.

Neural network regression.
We may be able to achieve good results using a neural
network regression, since neural networks can
automatically tune and model feature interactions.
Instead of manually determining which features to
combine in order to capture feature interactions, we
could let the learning algorithm perform this task. One
possible instance of features interacting in the real
world could be that New Yorkers may take taxi rides
near Central Park or when it is raining, but not when
they are near Central Park and it is raining, since they
may not visit the park in bad weather. Neural
networks could be promising because they can learn
nonlinearities automatically, such as this example of an
XOR relationship between features.

In addition to our three core regression models, we
implemented a neural network regression model using
the Python library PyBrain. However, we would need
more time to give the neural network model due
consideration, so we list it here as possible future
work.

Clustering feature template.
In order to find non-obvious patterns across data
points, we could use unsupervised learning to cluster
our training set. The clustering algorithm could use
features such as the number of bars and restaurants in
a given zone, or distance to the nearest subway station.
The cluster in which each data point falls could then
serve as an additional feature for our regression
models, thereby exploiting similar characteristics
between different zones for learning.

V. ACKNOWLEDGMENTS

We earnestly thank Professor Percy Liang and the
entire CS221 teaching staff for equipping us with the
conceptual tools to complete this project. We give
special thanks to Janice Lan for her thoughtful
feedback on our project as it matured over the course
of the quarter.

