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Abstract

Past research into Al techniques for the game Arimaa has dealt with refining the evaluation function
used in minimax tree search as well as defining a move ordering to prune the number of moves
considered at each game board. In this paper, we describe a function to identify the game phase of a
board in Arimaa. Intuitively, game phase captures the idea of progression throughout a game. We
apply this knowledge of game phase to the evaluation function of botFairy—an open-sourced bot—
and to move ordering. Preliminary results for applying game phase to board evaluation are negative:
botFairy outperformed our modified bot when both bots used a 2-ply minimax search with alpha-
beta pruning. However, applying game phase to move ordering yielded slight improvements,
especially for the later phases of the game.

1. Introduction

Arimaa is a two-player strategy board game played on an 8x8 checkerboard. As in chess, each player controls
16 pieces. Omar Syed, Arimaa’s creator, designed the game to be intuitive for humans but computationally
difficult for computers [1]. This difficulty for computers arises in part from the game’s enormous branching
factor, which results from a player’s ability to make four steps! in one turn. Researchers have estimated an
average of 16064 distinct legal moves per turn, with an average of 46 turns per player per game [2]. As a result
of Arimaa’s large branching factor, standard Al search techniques have not been neatly as successful in
Arimaa as in other games.

To combat this large branching factor, researcher David Wu wrote his undergraduate thesis on the
application of mowve ordering to Arimaa [2]. In our past work, building almost entirely upon Wu’s work in move
ordering, we applied various machine learning models (Naive Bayes, logistic regression, and SVM) to move
ordering in Arimaa [3]. We used these models to calculate the “expertness” of moves, and we defined “expert”
moves as moves played by players with an Elo of 2100 or higher.

However, it is unlikely that there exists a single, abstracted, “expert-move cutout” that applies to the entire
spectrum of game scenarios. Rather, it is more likely that experts tune their tactics and strategy depending on
the scenario, and a game-phase model could bring this context-based play to the forefront.

The exploration of game-phase is also applicable to the evaluation function in game-tree traversal. By giving a
game playing bot a representation of what phase of the game we are currently in, the bot can make a more
informed decision as to what strategies it should adopt. In other words, knowledge of game phase in a bot’s
evaluation function would allow it to mimic human game-phase-based play (for example, by assigning high
value to advancing rabbits in the endgame).

With these points in mind, we researched the notion of game phase in Arimaa, the tactics that are used in

T A step is defined as moving a piece in one of the four cardinal directions.



these phases, and the application of game phase to the two objectives outlined above. We begin in the next
section by describing a few important rules in Arimaa for readers unfamiliar with the game. In Section 3, we
discuss the definition of game phase and present two methods of implementing game phase discrimination.
Section 4 details how we applied game phase to an existing Arimaa bot, and Section 5 details our application
of game phase to move ordering. The last section concludes with a discussion of possible future research

paths.

2. Rules of Arimaa

In Arimaa, the two players are referred to as go/d and silver. Each player has 16 pieces, homologous? to the
game of Chess. The hierarchy of pieces is as follows, from weakest to strongest: eight rabbits, two cats, two
dogs, two horses, one camel, and one elephant. Each player’s pieces all start on the two home ranks (ranks 1
and 2 for gold, ranks 8 and 7 for silver). The game’s objective is to advance any of one’s rabbits to the
opponent’s home rank.

To be clear, in Arimaa, as in Chess, rank is a synonym for row, and fik is a synonym for column. The rank
number increases from bottom to top, and the file letter increases from left to right. (The silver camel in the
board in Figure 1 is said to be on (file, rank) = h7.)
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Figure 1: An Arimaa board in one of many possible starting configurations. [4]

Unlike in Chess, where the starting positions for each piece are set by the rules of the game, Arimaa players
are allowed to place their pieces on their two home ranks in any starting permutation. Gold begins play. Each
player’s move consists of up to four steps. A srep consists of moving any piece in one of the four cardinal

2 Actually homologous—there is a one-to-one correspondence between Chess pieces and Arimaa pieces.



directions, with the exception of rabbits, which can never move towards the home rank on their own volition.
Additionally, an Arimaa player must keep the following facts in mind when making a move.

1. Stronger pieces are able to dislodge (push or pull) strictly weaker pieces, consuming two s#gps.
a. In a push, the pushing piece assumes the location of the pushed piece, which can be
displaced in any of the valid? cardinal directions.
b. In a pull, the pulling piece moves in any of the valid cardinal directions, and the pulled piece
assumes the former location of the pulling piece.
2. Stronger enemy pieces can freeze a player’s weaker piece if it is isolated—that is, if the weaker piece has
no touching allied pieces.

Stronger Piece

Figure 2: An example of a frozen rabbit. The gold rabbit on e5 (highlighted in blue) is frozen by
silver’s cat. Coincidentally, the rabbit on d4 is also frozen (by silver’s elephant). No other pieces on
the board are frozen. [4]

The Arimaa board also designates four capture squares, at ¢3, c6, £3, and f6. (These squares are shaded and
extruded in Figures 1 and 2.) Any dso/ated piece standing on a capture square at the end of a sz is removed
from play. The prospects of pushing and pulling allow players to threaten capture of enemy pieces. In Figure 2,
the silver rabbit on f4 can be captured in 3 steps by the gold dog on g3: the dog can step north and execute a
2-step push to move the rabbit to the trap square on f3. (The dog ends up on 4.)

For the rules in some very special situations, please consult the Arimaa website [5].

3 A direction is considered valid if no other piece is cutrently at that location and the direction is not opposite the
direction of the push (i.e., swapping piece locations is not a valid push).



3. Understanding game phase
3.1 Defining Game Phase

Our work aims to improve Al in Arimaa by drawing inspiration from human gameplay. In particular, we aim

to capture the changes in the strategy of a human player as the game progresses.

Intuitively, game phase captures the idea of progression (from beginning to completion) of a game. More
precisely, game phase is defined using the following three features:

1. min(N,, N;), where N, and N; are the number of gold and silver pieces on the board, respectively.
2. max(Ag,AS), where
a. Agand A are the number of advanced gold and silver non-elephant pieces on the board,
respectively, and
b. an advanced gold piece is defined as any piece on ranks 4 or above, and an advanced silver
piece is defined as any silver piece on ranks 5 or below.

3. ILipreat, an indicator variable for whether there is a goal threat from either player on the board.

3.2 Discriminating game phase

Depending on the value of a board’s feature vector, the board can be grouped into different categories—
called game phases. Two particular methods of categorization are expounded below: (1) heuristic game phase
discrimination with hard coded categories, and (2) cluster-based game phase discrimination to find “natural”
categories in existing data.

3.2.1 Heuristic game phase discrimination

Each board was assigned a real-valued score by taking the dot product of the board’s feature vector and a
hand-coded feature-weights vector. Given the score of a board, we classified it into an appropriate game
phase based on hand-coded cutoffs. Hand-coded cutoffs and feature-weights were determined through trial

and error.

3.2.2 Game phase discrimination using clustering

In the clustering approach, we used a data set of archived games in order to find groups of similar boards. We
extracted the features (details in Section 3.1) from each board in each game, thereby converting our data to a
set of points in feature space. These points were clustered using the X-Means algorithm [6,7], where each of
the X resulting clusters represented a distinct game phase and X is the optimal number of clusters (according

to a statistical criterion) within a user-specified range.

3.3 Application of each approach
We used the heuristic approach to encode game phase into the evaluation function, and we used the
clustering approach to apply game phase to move ordering.

The strength of the heuristic approach is that it allows us to define intuitive game phases (i.e., beginning,
middle, and end) and tune our discriminator to align to these game phases. Since we have a clear
understanding of what these game phases mean in terms of gameplay, it is natural to encode phase-based
nuances into a bot’s evaluation function.



On the other hand, the strength of the clustering approach is that it leverages the power of statistics to find
groups of similar boards. This approach seems best suited for the application of game phase to move
ordering, with the hypothesis that experts play similar moves on similar boards and that statistical methods

can capture these subtle gameplay patterns best.

4. Combining game phase with Fairy’s evaluation function

4.1 Application to Fairy

We applied our heuristic game phase discriminator to the evaluation function of a pre-existing open-sourced
bot, Fairy* [8], in order to see if we could improve the scores it gave to boards. Fairy was written in 2006 and
is currently rated at an Elo of 1754. Fairy’s evaluation function calculates board statistics such as the position
of pieces (special emphasis is given to rabbits), the number and type of each piece on the board, and the
number and type of pieces surrounding the four traps. These statistics are weighted and summed together to

generate a score for a board position.

Given the statistics that Fairy uses to evaluate a board, we heuristically determined which phase(s) related to
which statistic used by Fairy. Once we determined this mapping, we modified the weights assigned to certain
statistics based on the game phase of the board being evaluated. Below is a list of the changes we made to

Fairy’s board evaluation:

® We penalized the piece values of cats and dogs that are advanced in the beginning game because cats
and dogs are weak in isolation against the full force of the enemy’s pieces.

® Ifa piece is framed> by three opponent pieces in the end game, we did not penalize its value (whereas
Fairy does penalize its value) because a framed piece ties up the enemy pieces required to maintain
the frame.

® In the beginning and middle game, we favored material value and trap value slightly more than the
advancement of rabbits. In the end game, we heavily favored the advancement of rabbits because
rabbit advancement allows us to win the game.

Our changes to Fairy’s evaluation function resulted in a modified version of Fairy. We call our modified bot
“Tweaked Fairy.”

4.2 Results and discussion of tweaks to Fairy’s evaluation

4.2.1 Evaluation of heuristic discriminator

We evaluated the heuristic discriminator by running it on a set of test games and qualitatively assessing the
results. We stepped through these test games and verified that the heuristic discriminator agreed with our
intuition in assigning game phases to boards. Figure 3 below shows how game phase changes as the game

progresses in four example games.

4 Different sources refer to Fairy with different names, such as Fairy, bot_Fairy and botFaity.
> A framed piece is a piece that is sutrounded in the cardinal directions by 3 stronger opponent pieces and 1 allied piece.



Game Phase Assignments
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Figure 3: Game phase assignments for four of the games in our test set. These games, labeled by
Game ID, were pulled from archives on the Arimaa website. At each move in each game, we
assigned the board a game phase (plotted on the y-axis) according to our heuristic game phase
discriminator. In our qualitative assessment, we noticed that many games oscillated between
middle- and end-game, as in the bottom right plot. This oscillation results from the appearance
and disappearance of goal threats.

4.2.2 Evaluation of Tweaked Fairy

We evaluated our work by playing Fairy against Tweaked Fairy in a series of test games, using a pre-existing
bot-playing framework [9]. Both bots used alpha-beta pruning in traversing the minimax tree. We played one
series of games with both bots using 1-ply lookahead and another series of games with both bots using 2-ply

lookahead. We did not use lookahead at 3-ply or greater because of computation time constraints.

One disadvantage of this test game methodology was that a slight time advantage was given to Tweaked Fairy.
In the test games, there was no time limit per move, and both bots searched the game-tree to the same depth.
Since Tweaked Fairy’s evaluation function involved more computation than Fairy’s (because Tweaked Fairy
calculated game phase), Tweaked Fairy took more time per evaluation. In particular, extracting the goal
threats feature (indicator Iypreqe defined in Section 3.1) was the most computation-time-intensive component
of Tweaked Fairy’s game phase discrimination. In order to minimize the extra evaluation time that Tweaked
Fairy requires, we created a new version of Tweaked Fairy that did not use goal threats at all. As a result, we
tested two versions of Tweaked Fairy:

® Tweaked Fairy GT (Goal Threats), which used all three features described in Section 3.1
® Tweaked Fairy NGT (No Goal Threats), which used all features except for Iipreqr



Version of Tweaked Fairy Version of Fairy Win percentage of Total games

Tweaked Fairy played
1-ply Tweaked Fairy GT 1-ply Fairy 88.35% 1914
1-ply Tweaked Fairy NGT 1-ply Fairy 67.12% 1834
2-ply Tweaked Fairy GT 2-ply Fairy 34.84% 155
2-ply Tweaked Fairy NGT 2-ply Fairy 33.33% 132

Table 1: Win percentages for Tweaked Fairy in games played against Fairy.

Our results, summarized in Table 1, show that Tweaked Fairy outperformed Fairy at 1-ply lookahead, but
underperformed against Fairy at 2-ply lookahead. Also, while Tweaked Fairy GT greatly outperformed
Tweaked Fairy NGT at 1-ply lookahead, it only slightly outperformed Tweaked Fairy NGT at 2-ply
lookahead; this could be because goal threat detection is especially important when using 1-ply lookahead,
since 1-ply lookahead does not recognize moves that would allow the enemy to score. Since play at 2-ply
lookahead gives a better indication as to the strength of a bot, these results show that Tweaked Fairy is not an
improvement to Fairy.

4.2.3 Error analysis
Our experimental methodology had shortcomings:

1. Fairy does not use a competitive evaluation function. Any results that we could have achieved by
modifying Fairy may not generalize to other bots, especially to bots with the most competitive and
highly-tuned evaluation functions.

2. As mentioned earlier, a slight time advantage was given to Tweaked Fairy, since Tweaked Fairy
required more computation per board evaluation than Fairy but was still allowed to search the game-
tree to the same depth and breadth.

Our results showed that Tweaked Fairy performed worse than Fairy at 2-ply lookahead. We propose these
hypotheses as to why this could be the case:

1. We did not have a chance to tune or validate the hand-coded values that we used in our
modifications to Fairy’s evaluation function. These values could have been poortly calibrated.
Therefore, even in light of negative results, the usefulness of game-phase-based evaluation cannot be
discounted.

2. Since different weighting schemes to evaluate boards were used at different game phases, moves that
transition between phases could be wrongly favored or disfavored.

5. Application of game phase to move ordering

5.1 Move ordering with Naive Bayes

In our past research into move ordering in Arimaa [3], we implemented a Naive Bayes classifier to model
moves based on “expertness.” We used a multivariate Bernoulli event model coupled with Laplace smoothing,.
Below, we describe this model and the problem of move ordering in more detail. Starting in Section 5.2, we
describe how we applied game phase to build upon this past work.

The first major documented effort in applying move ordering to the game of Arimaa was presented by

researcher David Wu. Move ordering applies machine learning to rank all possible moves given a game state



[2]. Game-playing bots can utilize the move-ordering ranking to consider moves in a smart order or to discard
all but the top ranking moves. We implemented the following features—all inspired by and well-detailed in
Wu’s paper [2]—to capture qualities of moves played by high-ranking Arimaa players:

1. Position and Movement
2. Trap Status

3. Freezing Status

4. Stepping on Traps

Our implementation of the Naive Bayes model for move ordering slightly modified the traditional Naive
Bayes classifier because we were dealing with move ordering rather than move dassification. Instead of
classifying a given move (denoted by feature vector x) as expert or non-expert (y = 1 or 0, respectively), our
Naive Bayes model output the log of the posterior odds of y, as shown below. We used this value as a “score”
for a move and ordered all possible moves in descending order according to this score. The ordering function

h was given by:

P(y =1|x)
P(y = 0]x)

In order to train our model, we performed the following algorithm (written below in pseudocode):

h(x) = log( ),x € {0,1}117¢6

for each game in the training data:
for each board position in the game:
1. Generate all possible legal moves, including the “expett” move actually played in the game
2. Extract feature vectors for all of these moves
3. Update a table that holds the frequency of occurtences for each feature (for y = 1 and y= 0)
In order to evaluate our model, we used cross-validation by training on 70% of the data and testing on 30%.
In order to train only on expert human moves, we only considered games in which both players’ Elo ratings
were above 2100. (This left 5,020 of the 278,000 total archived games as potential training candidates.)

5.2 Methodology of the clusterer

Building upon this past work, we decided that we could improve our singleton Naive Bayes model by splitting
it into smaller models, each of which predicted expertness for a given phase of the game. More precisely,
given some pre-computed notion of game-phase, these smaller models—one per game-phase—were trained
only on moves corresponding to that particular game phase.

As for computing game phase for use in our move ordering scheme, we used the Weka library’s
implementation of X-Means [6,7]—an extension of the K-Means algorithm that efficiently and statistically

optimizes the number of clusters in a dataset.

The X-Means clusterer was trained on a random sampling of games from the Arimaa database for which both
players were slightly above average (Elo > 1600). For each board in each game, the board position was
abstracted into a feature vector according to the same features described in Section 3.1. The resulting set of

feature vectors was clustered using the X-Means algorithm.

5.3 Multiple Naive Bayes models

For each cluster generated by the X-Means algorithm, we created a corresponding Naive Bayes model. Our



slightly updated training algorithm is written below in pseudocode:

Train the X-Means clusterer using any games where players were rated above an Elo of 1600.
Train the Multiple Naive Bayes model with a slightly modified method as follows:

for each game in the training data set:
for each board position in the game:
1. Generate all possible legal moves, including the “expert” move actually played in the game
2 Extract feature vectors for all of these moves
3. Classify the board position using X-Means
4

Update the one table corresponding to the cluster assignment of the board that holds the frequency of
occurrences for each feature (for y =1 and y = 0)

In comparing the singleton and the Multiple Naive Bayes models, it is worth noting that for a fixed amount
of data, there is a trade-off between the two. In the Multiple Naive Bayes model, we have trained multiple
models, each of which has been given a fraction of the total data. Therefore, to attain convergence, the
Multiple Naive Bayes model requires training on more games than the original Naive Bayes model did.

5.4 Results and discussion of move ordering

5.4.1 Evaluation of X-Means

Frequency of feature vector (no goal threat detected) _ . Frequency of feature vector (goal threat detected)

8
1600
7
1400
10 1200
1000
4
800
5 600
400
1 200
0 0

P|eces on the board min( gold 5|Iver Pleces on the board m|n(gold 5|Iver

)

)

[

n
Number of advanced non—elephants

Number of advanced non—elephants

Figures 4 and 5: These figures show a pseudo-heat-map of the feature vectors used to train the X-Means clusterer.
Because the features were integer-valued, the plots appear as pixelated mosaics, with each pixel’s color representing the
frequency of that particular vector. Furthermore, the third dimension of the three-dimensional feature space consists of
an indicator variable, so Figure 4 represents Itpreqr = 0 (no goal threat on the board) and Figure 5 represents Ieprear =
1 (goal threat present on the board). Note the large discrepancy in scale between the two figures (80,000 versus 1,800
boards).

Figures 4 and 5 above show the frequency distribution of the game-phase feature vector across 15,000 games
drawn from data where both players were rated above 1600 Elo (slightly above average and better).

As Figures 4 and 5 seem to corroborate, X-Means found two clusters in the data: one for starting boards, and
one for boards with a goal threat. In practice, far more moves are played that do not establish a goal threat



than do (this is clear from the scale discrepancy between the two plots). In order to further distinguish
between moves without a goal threat, we forced a minimum of three clusters for the X-Means algorithm.
(Indeed, X-Means returned the lowest number of clusters possible: three.) Although forcing more clusters
biases the X-means algorithm, an added benefit of increasing the number of clusters was that training data
was more evenly split between clusters and, hence, models.

5.4.2 Evaluation of move ordering with clustering

We evaluated the Multiple Naive Bayes model in the same way that we evaluated the singleton Naive Bayes
model in our past work. This enables a side-by-side comparison of the two methods. Below are two learning
curves. We tested our models four times each on {10, 20, ..., 150} games to produce the trial averages shown

below:
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Figures 6 and 7: These curves follow the expected behavior for high bias models. We see that these plots seem
to converge to around 86%, with slightly higher performance from Multiple Naive Bayes. We will need to
implement more features (and pethaps select different models altogether) to decrease bias.

We see that the learning curves are similar for the Naive Bayes and Multiple Naive Bayes models. Multiple
Naive Bayes converged more slowly to a slightly larger expert-move percentile. Not shown is that with 1000
training examples, Multiple Naive Bayes converged (quite nicely) to 87.5%: the training set percentile
decreased only slightly (with increasing numbers of examples) while the testing set percentile increased a few

percent to meet it.

In order to measure not only the average percentile but also the consistency with which the models rank
expert moves highly, we plotted the histograms shown in Figures 8 and 9.
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Figures 8 and 9: These plots compare the number of moves played within a game and the percentile of the expert
moves vs. the proportion of expert moves. We discretized the number of moves played into buckets of 10 moves. We
also discretized the percentile into buckets of 10%, where the displayed percentile is the average value of the bucket.

The histograms show expert move percentiles along with an added dimension: move number within the game.
The plots were generated by running two Naive Bayes trials for Figure 8 and two Multiple Naive Bayes trials
for Figure 9. Each model was trained on 700 games (to attain convergence of training/testing) and tested on
300 games. We see that both models rank the expert moves more highly in the beginning of the game (for
about the first 10-20 moves, marked in dark green) than for the middle- and end-game, where the distribution
flattens. However, the Multiple Naive Bayes model fares better than the singleton Naive Bayes model in the
middle- and end-game. The proportion of expert moves ordered in the top 10% of the move ordering
decreases monotonically (as move numbers increase) to a final value of .44 compared to .36 for the singleton
Naive Bayes model. (The value of .44 means that 44 out of every 100 expert moves were within the top 10%
of the move-ranking, across moves made by players 61-70 moves into the game.)

5.4.3 Error analysis/discussion for move ordering

We hypothesize that the features implemented tend to capture the qualities of a good move more for the
beginning-game than for the end-game. Our feature set has not been extended to consider other important
features of moves such as capture threats and goal threats. Additionally, even with multiple models for
different game phases, the X-Means clustering plots show that there is an imbalance in the availability of
training data for some of the clusters. States near the starting state are overrepresented in training because
every game starts in that state. The result is that model training data has a proportional preponderance to
train the “beginning game” model. Furthermore, many games end even before the 50th move, so the data for
the histogram plots simply contains more data instances for eatlier moves.

6. Conclusions and future work

6.1 Conclusions

Preliminary results of applying game phase to board evaluation were negative. Notably, when playing Fairy
against T'weaked Fairy—where both bots used a 2-ply minimax search with alpha-beta pruning—Tweaked
Fairy won less than ¥ of its games. Still, it is hard to entirely discount the application of game phase to the
evaluation function since the performance of this approach may improve when applied to different bots or
with more tuning of parameters.



Applying game phase to move ordering produced slightly positive results. Across a large test set of games, the
Multiple Naive Bayes model converged to an expert percentile 1.5% above that of the singleton Naive Bayes
model. Furthermore, past move twenty, the Multiple Naive Bayes model on average placed expert moves at
or above the 90th percentile with higher frequency than did Naive Bayes. This suggests that the Multiple
Naive Bayes model captured some phase dependency in expert play that the singleton Naive Bayes model did
not.

6.2 Future work

6.2.1 Strict vs. probabilistic cluster representation

In our game phase discrimination, we assigned boards to discrete game phases. However, one shortcoming of
this strict assignment of game phase is that it assumes that all boards belong to a single, predefined game
phase; in reality, boards are not so black-and-white. One could instead interpret game phase probabilistically,
assigning boards probabilities of belonging to different game phases. Under a probabilistic interpretation, a
board that is “in between” beginning and middle game would be represented as such, possibly resulting in
better and more nuanced models.

6.2.2 Game phase pruning

Another interesting application of game phase would be to predict whether, at a given board state in the
minimax tree, it is worth searching further down the tree. For example, if a path down the tree is leading a
bot closer to the start of the game, it would be able to stop looking down that path and spend computation
time else where.

6.2.3 Speeding up move ordering

One major caveat of our move ordering is that it is significantly slower than evaluating leaf nodes. With our
current implementation, it is only feasible to prune the first ply of the minimax tree. By decreasing the
computation time of move ordering, we would able to apply move ordering to all plies of the minimax tree,
thus allowing us to look deeper down the tree.

6.2.4 Improving the quality of move ordering

In our previous work on move ordering, in addition to evaluating a Naive Bayes model, we tested linear
support vector machine and logistic regression models. Those models performed better than Multiple Naive
Bayes did here, suggesting that “Multiple SVM” or “Multiple logistic regression” models could yield further
improvement.

Secondly, the feature set that we used for move ordering was quite limited—we implemented only a fraction
of what was implemented in Wu’s thesis [2]. Based on Wu’s thesis and our comparatively poor results, we
have reason to believe that additions to the feature set will improve the performance of any models used for

move ordering.

6.3 Concluding remarks

Opverall, we believe that game phase is a useful concept, especially in the context of Arimaa. It surfaces
different opportunities to prune the minimax tree and thus combat Arimaa’s large branching factor.
Hopefully, with continued improvements in how we examine the minimax tree, we will be able to achieve

“expert-level” performance in Arimaa and other games in the near future.
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